Hydration and Dissociation of Hydrogen Fluoric Acid (HF)

Srinivas Odde,[†] Byung Jin Mhin,[†] Kyu Hwan Lee,[‡] Han Myoung Lee,[§] P. Tarakeshwar,[§] and Kwang. S. Kim^{*,§}

Department of Chemistry, Pai Chai University, Daejeon 302-735, Korea, Korea Institute of Science and Technology, Seoul 130-650, Korea, and Center for Supefunctional Materials, Department of Chemistry, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea

Received: January 9, 2006; In Final Form: March 19, 2006

The hydration and dissociation phenomena of $HF(H_2O)_n$ ($n \le 10$) clusters have been studied by using both the density functional theory with the 6-311++G**[sp] basis set and the Møller–Plesset second-order perturbation theory with the aug-cc-pVDZ+(2s2p/2s) basis set. The structures for $n \ge 8$ are first reported here. The dissociated form of the hydrogen-fluoric acid in $HF(H_2O)_n$ clusters is found to be less stable at 0 K than the undissociated form until n = 10. HF may not be dissociated at 0 K solely by water molecules because the HF H bond is stronger than the OH H bond, against the expectation that the dissociated $HF(H_2O)_n$ would be more stable than the undissociated one in the presence of a number of water molecules. The dissociation would be possible for only a fraction of a number of hydrated HF clusters by the Boltzmann distribution at finite temperatures. This is in sharp contrast to other hydrogen halide acids (HCl, HBr, HI) showing the dissociation phenomena at 0 K for $n \ge 4$. The IR spectra of dissociated and undissociated structures of $HF(H_2O)_n$ are compared. The structures and binding energies of $HF(H_2O)_n$ are found to be similar to those of $(H_2O)_{n+1}$. It is interesting that $HF(H_2O)_{n=5,6,10}$ are slightly less stable compared with other sizes of clusters, just like the fact that $(H_2O)_{n=6,7,11}$ are slightly less stable. The present study would be useful for the experimental/ spectroscopic investigation of not only the dissociation phenomena of HF but also the similarity of the HFwater clusters to the water clusters.

I. Introduction

Acid dissociation is one of the most fundamental chemical reactions. It is also of fundamental importance in atmospheric and biological science.¹ A number of studies on hydration- and photoinduced dissociation of acids have been reported.² Among many acids, HF is a weak acid, while the HF hydrogen bond is very strong. Thus, its dissolution and reactivity have been interesting subjects because of its anomalous properties among acids. The strong bases can dissolve the HF acid in aqueous solution. Hydration and photolysis of HF with other solutes in the presence of water vapor upon ultraviolet radiation may lead to the formation and accumulation of atomic F and/or inorganic fluoric compounds. Because of its high reactivity. F can react with ozone and cause decay of the ozone layer. Another important point is the relevance in the design of novel receptors for the fluoride anion.³ The study of the interaction of a single HF acid molecule with water molecules^{4–7} helps illuminate some of the basic structural features that are required to allow proton transfer. The hydration of a fluoride anion and a proton 8,9 is closely related to the dissociation phenomena of HF. It should be noted that the F atom is more electronegative than the O atom, and the number of lone pairs of electrons of HF is three, while that of water is two.

In our previous study of $HF(H_2O)_{1-6}$,⁵ we did not find any dissociation phenomena in contrast to other hydrogen halide

acids HX (X = Cl/Br/I). The energy difference between undissociated and dissociated structures is getting smaller with the increasing number of water molecules. Therefore, it is of importance to investigate the possible dissociation of HF in the presence of more water molecules. Indeed, there have been a few studies on the dissociation/undissociation of HF((H₂O)₇.^{6,7} Thus, here we have extended our study for the neutral clusters of HF(H₂O)₇₋₁₀ using density functional theory (DFT) and ab initio calculations. We have investigated diverse structures including the conformers that are not available in the literature. The comparison between HF(H₂O)_{n=1-10} and (H₂O)_{n=2-11} is also a very interesting subject.

II. Calculation Methods

Numerous structures of neutral clusters of $[HF(H_2O)_{7-10}]$ were examined using density functional theory (DFT) with Becke's three parameter exchange potential and the Lee, Yang, and Parr correlation functional (B3LYP) with the 6-311++G**[sp] basis set where [sp] are the extra diffuse functions for the fluorine atom. Then, the lowest-energy clusters obtained from the B3LYP results were further optimized at the Møller-Plesset second-order perturbation (MP2) theory with the aug-cc-pVDZ+(2s2p/2s) basis set. The [sp] and (2s2p/2s) diffuse functions were added to describe the dissociation phenomena properly.⁵ The B3LYP and MP2 interaction energy differences between the most stable undissociated and dissociated forms are consistent. Vibrational frequency analysis was made to assess the nature of the stationary points and to obtain zero-point vibrational and free energies (ZPE and G) at the B3LYP level of theory. Calculations were performed using the

^{*} Corresponding author. E-mail: kim@postech.ac.kr.

[†] Pai Chai University.

[‡] Korea Institute of Science and Technology.

[§] Pohang University of Science and Technology.

Figure 1. Low-energy structures of $HF(H_2O)_{n=7-10}$.

Gaussian suite of programs.¹¹ Most of the figures presented here were drawn using the Pohang Sci-Tech Molecular Modeling (POSMOL).¹²

III. Results and Discussions

A. Hydration Structures and Energetics. We have searched for various conformers of neutral HF(H₂O)₇₋₁₀ clusters at the B3LYP/6-311++G**[sp] level by investigating its possible topological structures (Figure 1). In order not to miss low-energy structures, not only the structures of neutral water clusters and electron-bound water clusters^{13,14} but also the structures of hydrated cation clusters and hydrated halide clusters^{9,15,16} were used to build the hydrated HF structures. The geometrical parameters (such as F-H distance and its dissolution or partial ionization phenomena with increasing number of water molecules) depend highly on the coordination number of the halogen atom and hydrogen-bonding interactions. The lowest-energy $HF(H_2O)_{7-10}$ clusters were analyzed by considering (a) the coordination number of hydrogen halide, (b) H-bonding energy gain against strain, and (c) minimized H····H repulsions between two neighboring H atoms with alternating up-down H orientations. Among the many structures investigated, only low-lying energy structures are discussed in this work. Further, the lowestenergy clusters or the nearly isoenergetic clusters for the undissociated and dissociated cases are calculated at the MP2/ aug-cc-pVDZ+(2s2p/2s) level. The dissociated structures are denoted by subscript "d" in the notation of structure. The lowestenergy clusters of $HF(H_2O)_{1-6}$ are reported in our earlier work. The successive binding energies from mono- to hexahydrated HF systems are estimated as 6.3, 7.0, 10.0, 7.7, 7.6, and 8.2 kcal/mol based on the ZPE-corrected interaction energies $(-\Delta E_0)$ at the MP2/aug-cc-pVDZ+(2s2p/2s) level. The numbers of their H bonds for n = 1-6 are 1, 3, 4, 5, 7, and 8, respectively. The small hydrated hydrogen-fluoroic acids (for n = 1-4) have structures similar to the neutral water clusters (for n = 2-5). The successive binding energy of trihydrated hydrogen-fluoric acid [3R4] is considerably large because of the effective H-bond interactions of cyclic tetramer. The pentahydrated HF has a book-like structure, which is one of the low-energy neutral water hexamers. However, the hexahydrated HF has a fused 4- and 5-ring structure, which is different

Figure 2. Successive binding energies $(\delta \Delta E_0)$ of HF(H₂O)_{*n*} and (H₂O)_{*n*+1}. where each structure is chosen with the lowest energy confomer. The successive binding energies of (H₂O)_{*n*} are at the MP2/TZ2P++ level with the B3LYP-ZPE correction (ref 13).

from the lowest-energy structure of neutral water heptamer. This reflects the fact that the water hexamer and heptamer are less stable compared with other sizes of clusters and are susceptible to undergoing conformational transformation from two-dimensional to three-dimensional structures.

The interaction energies of HF with water molecules are larger than those of water molecules in neutral water clusters. The successive binding energies $(-\Delta E_0)$ of neutral water clusters for n = 2-11 (which have 1, 3, 4, 5, 8, 10, 12, 13, 15, and 17 H bonds) are reported as 2.9, 7.4, 9.5, 6.9, 6.0, 8.9, 11.8, 7.8, 8.5, and 6.9 kcal/mol at the MP2/TZ2P++ level.¹³ The successive binding energies of HF with water molecules are compared with those of H₂O with water molecules (Figure 2). It is interesting to note a similar trend between them.

For HF(H₂O)₇, Figure 1 shows 11 structures among which 9 structures are in cubic form with different hydrogen-bonding orientations and different dangling H-atom arrangements and the remaining two structures are in cyclic form (7I, 7G_d). Owing to the structural similarity of HF(H₂O)_n to (H₂O)_{n+1}, the cubical structures HF(H₂O)₇ are particularly stable as those of (H₂O)₈. The hydrogen fluoride directly coordinated to double-donor-single-acceptor (DDA)-type water molecule is found to be more stable than that coordinated to a single-donor-double-acceptor

(DAA)-type water molecule (7G'). Their interaction energies are reported in Table 1. On the basis of the F–H distance and stretch mode, we note that 7G, 7C, and 7D are only partially ionized structures, in which the F–H distances are found to be 1.14-1.22 Å. Cyclic structures (7I, 7G_d) with 10 hydrogen bonds are found to be less stable than the cubic forms (12 hydrogen bonds). The lowest-energy structure 7A is found to be undissociated with 3.90 (3.19) kcal/mol lower in energy than the dissociated structure 7B_d (reported in a previous work⁷) at the B3LYP (MP2) level Partially ionized structure 7G is still 0.63 (0.31) kcal/mol higher in energy than the undissociated form 7A. Among all possible hydrogen-bonded isomers of cubic HF(H₂O)₇, the lowest-energy conformer is undissociated structure 7A, followed by structure 7G.

The undissociated structures of $HF(H_2O)_8$ are derived by adding an additional water monomer unit (single-donor-singleacceptor; DA) to $HF(H_2O)_7$. Among the nine possible isomers, hydrogen fluoride directly connected to the DDA-type water molecule (8A) is found to be ~4.6 kcal/mol more stable than that connected to the DAA-type water molecule (8B and 8C). For $HF(H_2O)_9$, the lowest-energy structure 9A is undissociated, 2.63 kcal/mol lower in energy than the dissociated form $9D_d$. For $HF(H_2O)_{10}$, the lowest-energy undissociated structure 10A (followed by 10B and 10A'') is 3.05 kcal/mol lower in energy than the dissociated structures of $HF(H_2O)_{9-10}$, the hydrogen fluoride is directly coordinated to the DDA-type water molecule.

On the basis of MP2/aug-cc-pVDZ+(2s2p/2s), the lowestenergy undissociated and dissociated structures of HF(H₂O)_n are 7A and 7B_d for n = 7; 8A and 8H_d for n = 8; 9A and 9H_d for n = 9; and 10A and 10B_d for n = 10. The lowest-energy undissociated structures of HF(H₂O)₇₋₁₀ (7A, 8A, 9A, and 10A) are almost similar to those of (H₂O)₇₋₁₀ structures. The very strong hydrogen bonding between hydrogen fluoride and water costs a lot of energy to break, in contrast to other hydrogen halides.⁴⁻⁶ This is the reason that HF is a very weak acid. In Table 1 and Figure 3, the interaction energy difference between the undissociated and dissociated forms HF(H₂O)_n for n = 4-10decreases with the successive addition of water molecules. To compare the relative stabilities of undissociated and dissociated

TABLE 1: Interaction Energies of HF(H₂O)₇₋₁₀ Clusters at B3LYP/6-311++G**[sp] and [MP2-aug-cc-pVDZ+(2s2p/2s)] Levels

	B3LYP/6-311++G**[sp] and [MP2-aug-cc-pVDZ+(2s2p/2s)]											
n	conf	no. HB/CN	$-\Delta E_{\rm e}$	$-\Delta E_0$	$-\Delta G_{100}$	п	conf	no. HB/CN	$-\Delta E_{\rm e}$	$-\Delta E_0$	$-\Delta G_{100}$	
7	7A	12/3	80.56[79.74]	59.92[59.14]	42.18[42.02]	9	9A	15/3	104.15[101.71]	78.21[75.82]	54.90[52.45]	
	7G	12/3	79.21[78.70]	59.29[58.82]	41.50[40.32]		9B	15/3	102.82			
	7H	12/3	80.49	59.78	42.12		9C	15/3	99.45			
	7C	12/3	77.70				9E	14/3	101.91			
	7D	12/3	75.77				9F	15/3	99.37			
	7F	12/3	74.22				9J	15/3	99.31			
	7G′	12/3	75.93				9K	14/2	101.09			
	7I	10/3	73.37				9L	14/2	102.79			
	7Bd	12/3	76.92[76.55]	56.02[55.70]	38.15[37.78]		9 B d	15/3	102.43[100.38]	76.36[74.36]	52.97[50.92]	
	$7E_d$	12/3	73.07				$9D_d$	14/3	100.95 98.06	75.58 72.75	52.31[49.42]	
	$7G_d$	10/3	73.07				9G _d	14/3	98.08	73.89	50.82	
							$9H_d$	14/3	99.92	74.65	51.40	
							9 I _d	15/3	91.62			
8	8A	13/2	93.01[91.42]	69.70[68.03]	49.23[47.64]	10	10A	16/3	114.91[111.56]	86.91[83.62]	60.92[57.57]	
	8B	13/3	91.29 89.62	68.39[66.77]	48.00 46.33		10A'	16/3	113.13	84.90	58.99	
	8C	13/3	85.86	63.80	43.52		10A″	16/3	114.51[111.29]	86.34[83.41]	60.39[57.14]	
	$8A_d$	13/3	88.70	65.54	44.97		10B	16/2	115.28[112.32]	86.35[83.45]	60.36 57.39	
	$8D_d$	12/3	80.35				10C	16/3	112.53	84.38	58.44	
	8Ed	13/3	86.42				10D	16/3	110.73			
	8F _d	13/3	84.38				10E	16/3	110.52			
	8Gd	13/3	87.54				10B _d	16/3	111.89[108.81]	83.60[80.57]	57.39[54.30]	
	8H.	13/3	89.81[88.08]	66.71[65.02]	46.12[44.38]		10Fa	16/3	111.52	[]	[- ···]	
	8Id	13/4	79.82				10G _d	16/3	113.34[110.14]	85.10[81.96]	59.03[55.84]	

Figure 3. Hydration energies (a and b) and interaction energies per monomer (c and d) of undissociated and dissociated $HF(H_2O)_{n=1-10}$ clusters at the B3LYP/6-311++G**[sp] and MP2/aug-cc-pVDZ+(2s2p/2s) levels of theory.

TABLE 2: MP2/aug-cc-pVDZ+(2s2p/2s) Conformational Characteristics, Geometric Parameters, and Electronic Properties [Distances (r/Å), HOMO–LUMO Energy Gap ($\delta E_g/eV$), Dipole Moment (μ /Debye) and Koopman's Ionization Potential (IP_K/eV)] for the Low-Energy Clusters HX(H₂O)₇₋₁₀^{*a*}

conf		B3LYP/6-311++G**[sp]				MP2/aug-cc-pVDZ+(2s2p/2s)					
$\overline{\mathrm{HF}(\mathrm{H_2O})_{1-6}}$	no. HB/co/Hd	$r_{\rm FH}$	$r_{\rm FH1}$	$r_{\rm FO1}$	$\delta E_{ m g}$	$r_{\rm FH}$	$r_{\rm FH1}$	$r_{\rm FO1}$	μ	<i>IP</i> _K	
7A	12/3/3	0.998	1.66	2.45	7.96	0.995	1.64	2.46	2.71	13.78	
7G	12/3/3	1.20	1.53	2.35	7.92	1.27	1.49	2.37	2.60	13.77	
$7B_d$	12/3/3		1.54	2.53	7.94		1.53	2.52	2.26	13.87	
8A	13/2/4	1.001	1.35	2.43	7.89	0.995	1.34	2.45	2.35	13.65	
$8H_d$	13/3/4		1.53	2.50	7.92		1.52	2.49	1.10	13.61	
9A	15/3/4	1.021	1.62	2.41	7.46	1.002	1.65	2.43	2.23	13.30	
$9B_d$	15/3/4		1.51	2.40	7.48		1.50	2.36	4.39	13.39	
10A	16/3/5	1.067	1.56	2.36	7.71	1.034	1.58	2.39	1.07	13.43	
10B	16/2/5	0.984	1.39	2.47	7.61	0.975	1.39	2.48	4.10	13.54	
10G _d	16/3/5		1.51	2.39	7.31		1.50	2.36	3.54	13.16	

^{*a*} no. ^{HB/co/Hd} are the numbers of H bonds/halide–water coordination/dangling hydrogen atoms. r_{FO1} is the smallest fluorine–oxygen distance in the primary hydration shell. For the water molecules in all clusters, r_{OHn} = 0.969 ± (0.004 Å), where Hn denotes the non-hydrogen-bonded H atom, and r_{OHw} = 0.98–1.03 Å.

forms of hydrated hydrogen fluorides, their ZPE-corrected interaction energies at the B3LYP and MP2 levels of theory are shown in Figure 3. Because of the weak acidity and high dissociation energy, the hydrated hydrogen fluoride prefers to be in the undissociated form until n = 10. Against the possible expectation⁷ that HF would dissociate in the presence of a number of water molecules (because HCl/HBr/HI dissociated at 0 K because the HF H bond is stronger than the OH H bond, while the dissociation would occur probabilistically according to the Boltzmann distribution at finite temperatures. At 100 K, the free energy differences between the undissociated and dissociated states for n = 7, 8, 9, and 10 are 4.03, 3.11, 1.93, and 1.89 kcal/mol. In the case of n = 10, the population of dissociated structure would be \sim 0.01% at 100 K.

The interaction energies per monomer (Figure 3c and 3d) reflect the effect of the structure (n = 1: linear, n = 2-4: monoring, n = 5-6: 2D fused rings, and n = 7-10: 3D structures) on the stabilization by the H-bond interactions. Similar to the neutral water clusters, the cyclic tetramer or pentamer ring structures are highly effective for the stable H-bond interaction. The B3LYP results are overall similar to the MP2 results in the dissociation/undissociation trend. The MP2 hydration energies are slightly smaller than those of

B3LYP, and the MP2 calculation results also show a smaller energy difference between dissociated and undissociated structures than the B3LYP results.

B. Structural and Electronic Properties. Table 2 lists the conformational characteristics, geometrical parameters, and electronic properties of the lowest-energy undissociated and dissociated HF(H₂O)_n clusters at the B3LYP/6-311++G**[sp] and MP2/aug-cc-pVDZ+(2s2p/2s) levels. The coordination numbers (no. co) of undissociated HF(H₂O)_n for n = 2-10 are two or three, while the dissociated structures HF(H₂O)_n for n = 4-10 are tricoordinated. Tetracoordinated conformations such as 8I_d are less favorable, which is contrasted to other acid halides HX (X = Cl, Br, and I) (hexahydrated chloride, tetrahydrated bromide, and tetrahydrated iodide).

Figure 4 and Table 2 show the changes of F–H and F–O distances for the undissociated and dissociated forms of $HF(H_2O)_n$ upon the successive addition of *n* water molecules to the parent hydrogen fluoride. The F–H distances of undissociated $HF(H_2O)_n$ for n = 1-10 are 1L: 0.941 (0.943) Å; 2R3: 0.957 (0.957) Å; 3R4: 0.974 (0.972) Å; 4R5: 0.980 (0.976) Å; 5R44: 1.058 (1.038) Å; 6R54: 1.091 (1.066) Å; 7A: 0.998 (0.995)Å; 8A: 1.001 (0.995) Å, 9A: 1.021 (1.002) Å; 10A: 1.067 (1.003) Å at the B3LYP (MP2) level, respectively. The F–H distance of undissociated hydrogen

Figure 4. H–F (R_{F-H} and R_{dF-H1}) and F–O1 (R_{F-O1} and R_{dF-O1}) distances of undissociated and dissociated HF(H_2O)_n, where "d" denotes the dissociated state.

halides increases slightly with the increase of water molecules. HF(H₂O)_{5.6.10} show tricoordination with strong H-bond interactions between HF and water molecules. Thus, these H-F distances are enhanced slightly. The structures of n = 5, 6, and 10correspond to those of water clusters $(H_2O)_{n=6,7,11}$, which are relatively less stable than other size of clusters.¹³ Thus, this phenomenon is caused by the less stable structural effect. Generally, the average F-H distances of hydrated hydrogen halides tend to increase with the increase of cluster size and coordination number. The increase in H-X distance with the increase in number of water molecules for X = F is very small compared to X = Cl, Br, and I, which ensures the weak acidity of HF acid. The F–O distance decreases gradually as the number of water molecules increases, but the F-O distances of dissociated cases are generally shorter than those of undissociated cases at the MP2 level. The dissociated cases have a charged fluoride anion, which involves stronger F^{-} . HO interactions. The ionization potential (IP_K) decreases with the increasing number of water molecules because of the hydration effect.

C. IR spectra of HF(H₂O)_{*n*}. The B3LYP/6-311++G**[sp] vibrational frequencies for X–H and O–H stretching modes for hydrated hydrogen halides for dissociated/undissociated structures are in Table 3 and Figure 5. From our previous calculations,⁵ the stretching frequencies (ω_h) are generally

Figure 5. IR spectra for the O–H and F–H stretching modes of $HF(H_2O)_{n=7-10}$ (B3LYP/6-311++G**[sp]; harmonic frequencies scaled by 0.96).

overestimated in comparison with the experimental data. The calculated frequencies were scaled (ω_s) with the scale factor 0.96. An HF(H₂O)_n cluster in the undissociated form has one F–H and 2n O–H stretch modes that typically fall in the 2600–4000 cm⁻¹ range. The dissociated form H₃O⁺····F⁻···(H₂O)_{n-1} has three O–H stretch modes corresponding to the hydronium moiety as a characteristic peak for the H–F dissociation, and n – 1 OH stretch modes. Experimentally, the pure F–H stretch was observed around 3959 cm⁻¹,¹⁷ and the scaled (ω_s) frequency for F–H mode is 3936 cm⁻¹. The undissociated hydrogen halides bound to water clusters show strongly red shifted F–H stretch peaks (Figure 5). For the dissociated hydrated hydrogen fluorides, the O–H stretch peaks show those of hydronium moiety.

TABLE 3: Scaled (Scale Factor: 0.96) Frequencies (ω_s in cm⁻¹) and Intensities (10 km/mol in Subscript) of HF(H₂O)₇₋₁₀ Conformers at B3LYP/6-311++G**[sp]

					HF()	H ₂ O)"					
7A	2506169	308136	310394	3141145	341329	343957	346841	3488_{8}	350835	353575	358422
	360345	37219	37218	37224							
7G	1221_{2519}	2957 ₁₀₆₁	3043677	3114926	3238619	3315651	3468266	3483411	3488125	351683	3547765
	3549 ₇₀₅	3721 ₆₇	3724 ₉₈	3725 ₄₅							
8A	2465_{204}	$3070_{0.5}$	307659	3144242	333475	3393 ₄₆	3409 ₄₅	3467 ₄₆	3487 ₆	3493 ₁₇	$3498_{0.1}$
	354375	3545109	37208	372112	37212	37256					
9A	2168_{214}	2979_{91}	3031 ₈₈	3131 ₁₇₉	3290 ₆₂	3344 ₄₄	337749	340870	3461 ₃₆	3474 ₃₅	34924
	3511 ₅₃	3545 ₅₉	3583 ₅₈	3630 ₂₁	3719 ₇	3719 ₈	37226	3723 ₈			
10A	1701_{136}	303794	308245	309641	3143236	319899	334690	337265	344535	346145	34812
	3488 ₁₈	3504 ₁₀	3535 ₅₈	3550 ₈₉	3566 ₆₀	37167	37217	3722 ₈	37224	37367	
10B	2737 ₁₇₉₈	2967 ₅₃₅	3049 ₄₉₉	3070927	31242780	32651025	3404377	3438 ₅₂₄	3449 ₂₆	3473 ₁₂₄	3477 ₂₉₄
	3482170	3483371	3535794	3538779	3557_{802}	3714 ₅₈	3719101	371975	372045	372364	
					F ⁻ H ₃ O ⁺	$(H_2O)_{n-1}$					
7Bd	2378169	2432_{160}	2707_{101}	2815139	2831135	303372	335353	340334	341732	344355	347264
	347970	37217	37248	37253	155	72	55	54	52	55	- 04
8Hd	2372192	2437153	2699101	2799_{260}	2843138	3033 ₈₁	305171	33540.9	3364117	345720	34678
	349387	350772	37227	37237	37254	37387	71	017	,	20	0
9Bd	19831957	26261728	2854861	30241433	3084923	3180599	3259432	33091108	3435458	3453214	3497175
	3503422	3523730	3544258	3571664	371967	372063	372291	372453			
10Gd	1969218	2709 ₂₁₆	284174	3005113	3030175	309088	319463	330021	3333116	342151	3460_{20}
	3499 ₂₃	351143	352458	353840	358257	37146	37205	37247	37247	37367	20

The small undissociated $HF(H_2O)_n$ clusters are cyclic with the coordination number of two, and show monotonically increased red-shifted X-H stretch frequencies with the increased number of water molecules. More red-shifted F-H stretch frequency indicates a lower energy barrier for the proton transfer toward the dissociation structure. The F-H stretch modes of $HF(H_2O)_n$ clusters for n = 1-4 with monocyclic rings show high frequencies because of the low coordination number. For clusters n = 5-6 with tricoordination, the F–H stretch modes show large red-shifts. The undissociated forms of HF(H₂O)₇ are cubic with tricoordination and show the F-H stretch mode at 2506 cm⁻¹. In the case of HF(H₂O)₈, the undissociated form 8C with bicoordination shows a very strong F-H stretch mode at 2465 cm⁻¹. The undissociated forms of HF(H₂O)₉₋₁₀ with tricoordination show large red-shifts in the F-H stretch mode. The lowest energy undissociated forms of $HF(H_2O)_{7-10}$ (7A, 8A, 9A, and 10A) have the F-H stretch frequencies of 2506, 2465, 2168, and 1701 cm⁻¹, respectively. All of the dissociated HF(H₂O)₄₋₁₀ clusters (4_d'R44, 5_d'R54, 6_d'R55, 7B_d, 8H_d, 9B_d, and 10G_d) are tricoordinated, showing three strong red-shifted O-H stretch modes ensuring the hydronium moiety (2414, 2526, 2778 cm⁻¹ for n = 4; 1969, 2709, 2841 cm⁻¹ for n =10). The hydronium moiety of the 4_d 'R44, 5_d 'R54, 6_d 'R55, $7B_d$, 8H_d clusters are slightly different from the 9B_d and 10G_d. In the cases of 9B_d and 10G_d, the hydronium moiety directly interacts with the fluoride, whereas in the other cases (n = 4-8), the hydronium moiety is separated from the fluoride.

IV. Concluding Remarks

The structures of HF(H₂O)₇₋₁₀ were investigated with B3LYP/ 6-311++G**[sp] and MP2/aug-cc-pVDZ+(2s2p/2s) calculations. The undissociated structures are found to be more stable than the dissociated structures (zwitter-ionic form) until n =10 because of the weak acidity and strong binding energy of HF. Against the possible expectation that HF would dissociate in the presence of a number of water molecules (because HCl/ HBr/HI dissociates easily for $n \ge 4$), it is likely that HF would not be dissociated at 0 K because the HF H bond is stronger than the OH H bond, while the dissociation would occur probabilistically according to the Boltzmann distribution at finite temperatures. The coordination number (no. co) for F in hydrated hydrogen fluoride clusters changes from two (for n <4) to three at the pentahydrated case. Mono- to tetrahydrated systems have monocyclic ring structures, whereas cagelike structures are formed from the heptahydrated cases, similar to the neutral water clusters $[(H_2O)_n]$. Their interaction energies are slightly larger but similar to those of neutral water clusters. The penta- and hexahydrated undissociated HF acids have double cyclic-ring structures, which are different from the cage structures of $(H_2O)_{n=6,7}$, and they have relatively longer H-F distances with respect to other clusters because of the effective H-bond interaction with water molecules. Nevertheless, the overall stability of $HF(H_2O)_n$ is similar to that of $(H_2O)_{n+1}$. It is interesting to find that the slightly less stable behavior of $(H_2O)_{n=6,7,11}$ is also noted for the cases of $HF(H_2O)_{n=5,6,10}$.

Acknowledgment. This work was supported by CRI (KO-SEF) and BK21. Computations were carried out using supercomputers at SERI and KIST.

Supporting Information Available: The basis sets used at B3LYP and MP2 calculations and the structures and *xyz* coordinations are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) (a) Zubay, G. L. Biochemistry; Brown, Wm. C. Publishers: Chicago, 1998. (b) Stryer, L. Biochemistry; Freeman W. H. Company: New York, 1988. (c) Kirk, K. L. Biochemistry of Halogens and Inorganic Halid; Plenum Press: New York, 1991. (d) Gutmann, V.; Resch, G. Lecture Notes on Solution Chemistry; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1995. (e) Krestov, G. A.; Novosyolov, N. P.; Perelygin, I. S.; Kolker, A. M.; Safonova, L. P.; Ovchinnikova, V. D.; Trostin, V. N. Ionic Solution; Ellis Horwood Ltd., 1994. (f) Tarakeshwar, P.; Lee, H. M.; Kim, K. S. Reviews of Modern Quantum Chemistry, Vol. II; Sen, K. D.; World Scientific: Singapore, 2002, pp 1642–1683. (g) Stemmler, K.; von Gunten, U. Atmos. Environ. 2000, 34, 4241. (h) W. L. Chameides in The Earth's Electrical Environment; Nat. Acad. Press: Washington D.C., 1986.

(2) (a) Bragg, A. E.; Verlet, J. R. R.; Kammrath, A.; Cheshnovsky,
O.; Neumark, D. M. Science 2004, 306, 669. (b) Paik, D. H.; Lee, I.-R.;
Yang, D.-S.; Baskin, J. S.; Zewail, A. H. Science 2004, 306, 672. (c) Coe,
J. V.; Earhart, A. D.; Cohen, M. H.; Hoffman, G. J.; Sarkas, H. W.; Bowen,
K. H. J. Chem. Phys. 1997, 107, 6023. (d) Carlson, R. W.; Johnson, R. E.;
Anderson, M. S. Science 1999 286, 97. (e) Vaida, V.; Kjaergaard, H. G.;
Hintze, P. E.; Donaldson, D. J.; Science 2003, 299, 1566. (f) Gertner B. J.;
Hynes, J. T. Science 1996 271, 1563. (g) Rakitzis, T. P.; Samartzis, P. C.;
Toomes, R. L.; Kitsopoulos, T. N.; Brown, A.; Balint-Kurti, G. G.;
Vasyutinskii, O. S.; Beswick, J. A. Science 2003, 300, 1936. (h) Hurley, S.
M.; Dermota, T. E.; Hydutsky, D. P.; Castleman, A. W., Jr. Science 2002, 298, 202. (i) Toubin, C.; Picaud, S.; Hoang, P. N. M.; Girardet, C.; Lynden-Bell, R. M.; Hynes, J. T. J. Chem. Phys. 2003, 118, 9814.

(3) (a) Chellappan, K.; Singh, N. J.;. Hwang, I.-C.; Lee, J. W.; Kim, K. S. Angew. Chem., Int. Ed. 2005, 44, 2899. (b) Chellappan, K.; Singh, N. J.; Hwang, I.-C.; Lee, J. W.; Kim, K. S. Angew. Chem. 2005, 117, 2959. (c) Yun, S.; Ihm, H.; Kim, H. G.; Lee, C.-W.; Indrajit, B.; Oh, K. S.; Gong, Y. J.; Lee, J. W.; Yoon, J.; Lee, H. C.; Kim, K. S. J. Org. Chem. 2003, 68, 2467. (d) Kim, K. S. Bull. Korean Chem. Soc. 2003, 24, 757. (e) Ihm, H.; Yun, S.; Kim, H. G.; Kim, J. K.; Kim, K. S. Org. Lett. 2002, 4, 2897. (f) Pak, C.; Lee, H. M.; Kim, J.; Kim, C.; D.; Kim, K. S. Struct. Chem. 2005, 16, 187. (g) Singh, N. J.; Olleta, A. C.; Anupriya, Park, M.; Yi, H.-B.; Bandyopadhyay, I.; Lee, H. M.; Tarakeshwar, P.; Kim, K. S. Theor. Chem. Acc. 2000, 115, 127. (h) Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. Rev. 2006, 35, 355.

(4) (a) Chaban, G. M.; Gerber, R. B.; Janda, K. C. J. Phys. Chem. A 2000, 105, 8323. (b) Hanson, D. R.; Ravishankara, A. R. J. Phys. Chem. 1992, 96, 2682. (c) Lee, C.; Sosa, C. J. Chem. Phys. 1996, 104, 7081. (d) Lee, C.; Sosa, C.; Novoa, J. J. Chem. Phys. 1995, 103, 4360. (e) Cabaleiro-Lago, E. M.; Hermida-Ramon, J. M.; Rodriguez-Otero, J. J. Chem. Phys 2002, 117, 3160. (f) Agmon, N. J. Phys. Chem. A 1998, 102, 192. (g) Amirand, C.; Maillard, D. J. Mol. Struct. 1998, 176, 181. (h) Re, S.; Osamura, Y.; Suzuki, Y.; Schaefer, H. F., III J. Chem. Phys. 1998, 109, 973.

(5) Odde, S.; Mhin, B. J.; Lee, S.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 120, 9524.

(6) (a) Smith, A.; Vincent, M. A.; Hillier, I. H. J. Phys. Chem. A 1999, 103, 1132. (b) Re, S. J. Phys. Chem. A 2001, 105, 9725.

(7) Kuo, J.-L.; Klein, M. L.; 2004, 120, 4690.

(8) (a) Kebarle, P.; Arshadi, M.; Scarborough, J. J. Chem. Phys. 1968, 49, 817. (b) Yates, B. F.; Schaefer, H. F., III; Lee, T. J.; Rice, J. E. J. Am. Chem. Soc. 1988, 110, 6327. (c) Cabarcos, O. M.; Weinheimer, C. J.; Lisy, J. M.; Xantheas, S. S. J. Chem. Phys. 1999, 110, 5. (d) Chaban, G. M.; Xantheas, S. S.; Gerber, R. B. J. Phys. Chem. A 2003, 107, 4952.

(9) (a) Baik, J.; Kim, J.; Majumdar, D.; Kim, K. S. J. Chem. Phys. 1999, 110, 9116. (b) Kim, J.; Lee, H. M.; Suh, S. B.; Majumdar, D.; Kim, K. S. J. Chem. Phys. 2000, 113, 5259. (c) Majumdar, D.; Kim, J.; Kim, K. S. J. Chem. Phys. 2000, 112, 101. (d) Lee, H. M.; Kim, D.; Kim, K. S. J. Chem. Phys. 2002, 116, 5509. (e) Lee, H. M.; Suh, S. B.; Kim, K. S. J. Chem. Phys. 2003, 119, 7685. (f) Lee, H. M.; Suh, S. B.; Kim, K. S. J. Chem. Phys. 2003, 119, 7685. (g) Lee, E. C.; Lee, H. M.; Tarakeshwar, P.; Kim, K. S. J. Chem. Phys. 2003, 119, 7725. (h) Odde, S.; Mhin, B. J.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2003, 119, 7725. (h) Odde, S.; Mhin, B. J.; Lee, H. M.; Yak, C.; Dupuis, M.; Kim, K. S. J. Phys. Chem. A 2005, 109, 9419. (j) Veerman, A.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2003, 123, 084321. (10) (a) Kebarle, P.; Searles, S. K.; Zolla, A.; Scarborough, J.; Arshadi,

(d) (a) Rebarle, 1., Scarles, S. K., Zoha, A., Scarbolougi, S., Arshadi,
M. J. Am. Chem. Soc. 1967, 89, 6393. (b) Cunningham, A. J.; Payzant, J. D.; Kebarle, P. J. Am. Chem. Soc. 1972, 94, 7267. (c) Xie, Y.; Remington,
R. B.; Schaefer, H. F., III J. Chem. Phys. 1994, 101, 4878. (d) McDonald,
S.; Ojamae, L.; Singer, S. J. J. Phys. Chem. A 1998, 102, 2824. (e) Miyazaki,
M.; Fujii, A.; Ebata, T.; Mikami, N. Science 2004, 304, 1134. (g) Shin,
J.-W.; Hammer, N.; Diken, I. E. G.; Johnson, M. A.; Walters, R. S.; Jaeger,
T. D.; Duncan, M. A.; Christie, R. A.; Jordan, K. D. Science 2004, 304, 1137.

(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;

Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gasusian 03*, revision A.1; Gaussian, Inc.: Wallingford, CT, 2004.

(12) Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061.

(13) (a) Kim, J.; Kim, K. S. J. Chem. Phys. 1999, 111, 10077. (b) Kim,
K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145. (c) Lee, H.
M.; Suh, S. B.; Lee, J. Y.; Tarakeshwar, P.; Kim, K. S. J. Chem. Phys.
2000, 112, 9759; 2001, 114, 3343. (d) Lee, H. M.; Suh, S. B.; Kim, K. S.
J. Chem. Phys. 2001, 114, 10749. (e) Lee, H. M.; Suh, S. B.; Kim, K. S.
J. Chem. Phys. 2001, 115, 7331. (f) Lee, H. M.; Lee, S.; Kim, K. S. J.
Chem. Phys. 2003, 119, 187. (g) Lee, H. M.; Suh, S. B.; Tarakeshwar, P.;
Kim, K. S. J. Chem. Phys. 2005, 122, 044309.

(14) (a) Franken, K. A.; Jalaie, M.; Dykstra, C. E. Chem. Phys. Lett.
1992, 198, 59. (b) Mo, O.; Yanez, M.; Elguero, J. J. Chem. Phys. 1992,
97, 6628. (c) Xantheas, S. S. J. Chem. Phys. 1995, 102, 4505. (d) Sadlej,
J.; Buch, V.; Kazimirski, J. K.; Buck, U. J. Phys. Chem. A 1999, 103, 4933.
(e) Tsai, C. J.; Jordan, K. D. Chem. Phys. Lett. 1998, 213, 181. (f) Pedulla,
J. M.; Kim, K.; Kim, K. D. Chem. Phys. Lett. 1998, 291, 78. (g) Buck, U.;
Ettischer, I.; Melzer, M.; Buch, V.; Sadlej, J. Phys. Rev. Lett. 1998, 80,
2578. (h) Khan, A. J. Chem. Phys. 1997, 106, 5537. (i) Wales, D. J.; Hodges,

M. P. Chem. Phys. Lett. 1998, 286, 65. (j) Masella, M.; Flament, J. P. J. Chem. Phys. 1997, 107, 9105. (k) Laasonen, K.; Klein, M. L. J. Phys. Chem. 1994, 98, 10079.

(15) (a) Combariza, J. E.; Kestner, N. R.; Jortner, J. J. Chem. Phys.
1994, 100, 2851. (b) Combariza, J. E.; Kestner, N. R. J. Phys. Chem. 1994, 98, 3513. (c) Kim, J.; Lee, S.; Cho, S. J.; Mhin, B. J.; Kim, K. S. J. Chem. Phys. 1995, 102, 839. (d) Lee, S.; Kim, J.; Park, J. K.; Kim, K. S. J. Phys. Chem. 1996, 100, 14329. (e) Lee, H. M.; Kim, J.; Lee, S.; Mhin, B. J.; Kim, K. S. J. Chem. Phys. 1999, 111, 3995. (f) Lee, H. M.; Diefenbach, M.; Suh, S. B.; Tarakeshwar, P.; Kim, K. S. J. Chem. Phys. 2005, 123, 074328. (g) Lee, H. M.; Tarakeshwar, P.; Park, J.; Kolaski, M. R.; Yoon, Y. J.; Li, H.-B.; Kim, W. Y.; Kim, K. S. J. Phys. Chem. A 2004, 108, 2949. (h) Singh, N. J.; Park, M.; Min, S. K.; Suh, S. B.; Kim, K. S. Angew. Chem. Int. Ed. 2006, 45, 3795. (i) Singh, N. J.; Park, M.; Min, S. K.; Suh, S. S.; Kim, K. S. Angew. Chem. Int. Ed. 2006, 45, 3795. (i) Singh, N. J.; Park, M.; Min, S. K.; Suh, S. S.; Kim, K. S. Angew. Chem. Int. Kim, K. S. Angew. Chem. 2006, 118, 3879.

(16) (a) Tuñón, I.; Silla, E.; Bertrán, J. J. Phys. Chem. 1993, 97, 5547.
(b) Wei, D.; Salahub, D. R. J. Chem. Phys. 1994, 101, 7633. (c) Agmon, N. Chem. Phys. Lett. 1995, 224, 456. (d) Planas, M.; Lee, C.; Novoa, J. J. J. Phys. Chem. 1996, 100, 16495. (e) Vuilleumier, R. Borgis, D. Chem. Phys. Lett. 1998, 284, 71. (f) Wales, D. J. J. Chem. Phys. 1999, 111, 8429. (g) Schmitt, U. W.; Voth, G. A. J. Chem. Phys. 1999, 111, 9361. (h) Xie, Y.; Remington, R. B.; Schaefer, H. F., III J. Chem. Phys. 1994, 101, 4878.
(i) Klein, S.; Kochanski, E.; Strich, A.; Sadlej, A. J. J. Phys. Chem. A 1997, 101, 4799. (j) Jiang, J.-C.; Wang, Y.-S.; Chang, H.-C.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H.-C. J. Am. Chem. Soc. 2000, 122, 1398. (k) Ciobanu, C. V.; Ojamäe, L.; Shavitt, I.; Singer, S. J. J. Chem. Phys. 2000, 113, 5321. (l) Meot-Ner (Mautner), M.; Speller, C. V. J. Phys. Chem. 1986, 90, 6616.

(17) Farnik, M.; Weimann, M.; Suhm, M. A. J. Chem. Phys. 2003, 118, 10120; Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology; Springer-Verlag: Heidelberg, 1974; Vol. 6.